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The quest for guantum neural nets

AParametrizedjuantum system that can be trained
to accomplish tasks such @assification

Aln many cases, it is not easy to identify what is the
fundamental buildindplock with which one could
describe theguantum system as a learning
algorithm

AThis work can be seen as a conceptual attempt at
addressing this issue




Nonlinearandparallel

Builds up its own rules
throughexperience

Neural network

a machine that is designed to
mimic the way in which the
brain performs a particular
task or function of interest



Basic requirements for qguantum NN

1. Initial state encodes

anyN-bit binarystring =& 0200 [0

2. Reflects one or more  e.g. attractor dynamics, synaptic
basic neural Computing connections, integrate & fire, training
- rules, structure of a NN
mechanisms

3. The evolution is based
on quantumeffects

Superposition and entanglement

Schuld M., Sinayskiyl. &Petruccione F.Quantuminf Proces$2014) 13: 2567
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Can we realize artificial neurons on a
gquantum computer?



QM + NN: an unlikely match ?

Quantum Mechanics (QM) Neural Networks (NN)

A Unitary evolution ALossytransformations

ARotation in Hilbert space  AClustering, classification,
compressioretc




Challenges | Ve

ASigmoid / step function activation /

How to realizeon quantum computers, ;——-—— .
whose dynamics Imear?
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AMeasurement? Opesystem? Cost scaling?

May collapse the state / reduce to
classical probabilistalgorithms

Story of quantum error correction



Our proposal

Neuron <= Qubit

Activation <= Rotation angle
Information from
previous layer
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Introduce nonlinearit

Repeatuntil-success (RUS) circults:
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ASize

ANeuron type
AConnectivity
AActivation function
AWeight/bias setting

ATraining method
AX



