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The quest for quantum neural nets

ÅParametrized quantum system that can be trained 
to accomplish tasks such as classification

ÅIn many cases, it is not easy to identify what is the 
fundamental building block with which one could 
describe the quantum system as a learning 
algorithm

ÅThis work can be seen as a conceptual attempt at 
addressing this issue



Nonlinear and parallel

Builds up its own rules 
through experience

Neural network

a machine that is designed to 
mimic the way in which the 
brain performs a particular 
task or function of interest



Basic requirements for quantum NN

1. Initial state encodes 
any N-bit binary string

2. Reflects one or more 
basic neural computing 
mechanisms

3. The evolution is based 
on quantum effects

e.g. attractor dynamics, synaptic 
connections, integrate & fire, training 
rules, structure of a NN
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Superposition and entanglement
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Can we realize artificial neurons on a 
quantum computer?



QM + NN: an unlikely match ?

ÅUnitary evolution

ÅRotation in Hilbert space

Quantum Mechanics (QM) Neural Networks (NN)

ÅLossytransformations

ÅClustering, classification, 
compression etc



Challenges

ÅSigmoid / step function activation
How to realize on quantum computers, 
whose dynamics is linear?

ÅMeasurement? Open system?
May collapse the state / reduce to 
classical probabilistic algorithms

Dissipative dynamics

Story of quantum error correction

Reversible circuits

Cost scaling?



Our proposal

Neuron Qubit
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Introduce nonlinearity

Repeat-until-success (RUS) circuits: 

Given ability to realize Ὑ ςὼ

One could use RUS to realize Ὑ ςὪὼ
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Success

Fail but easily 
correctable

Nonlinear!

Repeat until success
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ÅSize

ÅNeuron type

ÅConnectivity

ÅActivation function

ÅWeight/bias setting

ÅTraining method

ÅΧ


